On the diameter of reconfiguration graphs for vertex colourings
نویسندگان
چکیده
The reconfiguration graph of the k-colourings of a graph G contains as its vertex set the proper vertex k-colourings of G, and two colourings are joined by an edge in the reconfiguration graph if they differ in colour on just one vertex of G. We prove that for a graph G on n vertices that is chordal or chordal bipartite, if G is k-colourable, then the reconfiguration graph of its l-colourings, for l ≥ k + 1, is connected and has diameter O(n). We show that this bound is asymptotically tight up to a constant factor.
منابع مشابه
Reconfiguration graphs for vertex colourings of chordal and chordal bipartite graphs
A k-colouring of a graph G = (V,E) is a mapping c : V → {1, 2, . . . , k} such that c(u) 6= c(v) whenever uv is an edge. The reconfiguration graph of the k-colourings of G contains as its vertex set the k-colourings of G, and two colourings are joined by an edge if they differ in colour on just one vertex of G. We introduce a class of k-colourable graphs, which we call k-colour-dense graphs. We...
متن کاملPaths between colourings of sparse graphs
The reconfiguration graph $R_k(G)$ of the $k$-colourings of a graph~$G$ has as vertex set the set of all possible $k$-colourings of $G$ and two colourings are adjacent if they differ on exactly one vertex. We give a short proof of the following theorem of Bousquet and Perarnau (\emph{European Journal of Combinatorics}, 2016). Let $d$ and $k$ be positive integers, $k \geq d + 1$. For every $\eps...
متن کاملA dichotomy theorem for circular colouring reconfiguration
Let p and q be positive integers with p/q ≥ 2. The “reconfiguration problem” for circular colourings asks, given two (p, q)-colourings f and g of a graph G, is it possible to transform f into g by changing the colour of one vertex at a time such that every intermediate mapping is a (p, q)-colouring? We show that this problem can be solved in polynomial time for 2 ≤ p/q < 4 and that it is PSPACE...
متن کاملOn reverse degree distance of unicyclic graphs
The reverse degree distance of a connected graph $G$ is defined in discrete mathematical chemistry as [ r (G)=2(n-1)md-sum_{uin V(G)}d_G(u)D_G(u), ] where $n$, $m$ and $d$ are the number of vertices, the number of edges and the diameter of $G$, respectively, $d_G(u)$ is the degree of vertex $u$, $D_G(u)$ is the sum of distance between vertex $u$ and all other vertices of $G$, and $V(G)$ is the...
متن کاملA Reconfigurations Analogue of Brooks' Theorem and its Consequences
Let G be a simple undirected graph on n vertices with maximum degree ∆. Brooks’ Theorem states that G has a ∆-colouring unless G is a complete graph, or a cycle with an odd number of vertices. To recolour G is to obtain a new proper colouring by changing the colour of one vertex. We show an analogue of Brooks’ Theorem by proving that from any k-colouring, k > ∆, a ∆-colouring of G can be obtain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electronic Notes in Discrete Mathematics
دوره 38 شماره
صفحات -
تاریخ انتشار 2011